A regression-based Monte Carlo method to solve two-dimensional forward backward stochastic differential equations

نویسندگان

چکیده

Abstract The purpose of this paper is to investigate the numerical solutions two-dimensional forward backward stochastic differential equations(FBSDEs). Based on Fourier cos-cos transform, approximations conditional expectations and their errors are studied with characteristic functions. A new scheme proposed by using least-squares regression-based Monte Carlo method solve initial value FBSDEs. Finally, a experiment in European option pricing implemented test efficiency stability scheme.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Regression-based Monte Carlo Method to Solve Backward Stochastic Differential Equations1 by Emmanuel Gobet, Jean-philippe Lemor

We are concerned with the numerical resolution of backward stochastic differential equations. We propose a new numerical scheme based on iterative regressions on function bases, which coefficients are evaluated using Monte Carlo simulations. A full convergence analysis is derived. Numerical experiments about finance are included, in particular, concerning option pricing with differential intere...

متن کامل

Mean Field Forward-Backward Stochastic Differential Equations

The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.

متن کامل

A forward-backward Monte Carlo method for solving influence diagrams

Although influence diagrams are powerful tools for representing and solving complex decisionmaking problems, their evaluation may require an enormous computational effort and this is a primary issue when processing real-world models. We shall propose an approximate inference algorithm to deal with very large models. For such models, it may be unfeasible to achieve an exact solution. This anytim...

متن کامل

Stabilized multilevel Monte Carlo method for stiff stochastic differential equations

A multilevel Monte Carlo (MLMC) method for mean square stable stochastic differential equations with multiple scales is proposed. For such problems, that we call stiff, the performance of MLMC methods based on classical explicit methods deteriorates because of the time step restriction to resolve the fastest scales that prevents to exploit all the levels of the MLMC approach. We show that by sw...

متن کامل

Numerical Method for Backward Stochastic Differential Equations

We propose a method for numerical approximation of Backward Stochastic Differential Equations. Our method allows the final condition of the equation to be quite general and simple to implement. It relies on an approximation of Brownian Motion by simple random walk.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2021

ISSN: ['1687-1839', '1687-1847']

DOI: https://doi.org/10.1186/s13662-021-03361-5